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On the rule of mixtures for f low stresses in 
stainless-steel-clad aluminium sandwich sheet 
metals 

DONG NYUNG LEE, YOON KEUN KIM* 
Department of Metallurgical Engineering, Seoul National University, Seoul 151, Korea 

The flow stresses in stainless-steel-clad aluminium sandwich sheet metals followed the mix- 
ture rule which is an average of component properties weighted by volume fractions, even 
when transverse stresses were calculated to develop in the component layers due to their dif- 
ferent anisotropic plastic behaviours. Such flow stresses in the sandwich sheets were attributed 
not to negligibly small transverse stresses compared with longitudinal stresses, but to the 
compensation effects of increased and decreased longitudinal stresses due to tensile and com- 
pressive transverse stresses developed in the different component layers. 

1. Introduction 
Stainless-steel-clad aluminium sandwich sheets have 
both the very good corrosion-resistant and mechanical 
properties of stainless steel and the excellent heat and 
electrical conductivities of aluminium. The flow stresses 
of the sandwich sheets are known to follow the mixture 
rule given below in Equation 1 [1, 2], just like fibre- 
reinforced composite materials tensioned along the 
fibre axis: 

aus = O'uAVA + o-u, VB (1) 

where au and V indicate the uniaxial flow stress and 
volume fraction, and subscripts s, A and B stand for 
the sandwich sheet and its component A and B layers, 
respectively. The flow stress of a fibre-reinforced com- 
posite material may be easily understood on the basis 
of the isostrain hypothesis. However, the behaviour of 
a sandwich sheet cannot be as simple as in fibre-rein- 
forced composite materials, because transverse stresses 
may develop in the component layers due to a differ- 
ence in their anisotropy. Therefore, the mixture rule 
for the sandwich sheet has been attributed to the 
presence of negligibly small transverse stresses com- 
pared to axial or longitudinal stresses [2]. 

The purpose of this work is to examine the appli- 
cability of the mixture rule to stainless-steel-clad alu- 
minium sandwich sheets. 

2. Experimental methods  
Sandwich sheets of (304 stainless s teel)-aluminium- 
(304 stainless steel) of 2 to 3 mm thickness were fabri- 
cated by rolling at 400 to 500 ° C, during which the 
stainless steel sheets were reduced by 4 to 10% and the 
commercial-purity aluminium sheets by 30 to 48% 
(Table I). The clad sheets were subsequently annealed 
at 400 ° C for 15 min to remove residual stresses in the 
sheets and to improve the bond strength between the 
layers. The oxide scale on the sheet surface was 
removed by 10% nitric acid at 70 ° C. 

*Present address: Iljin Corporation, Seoul, Korea. 

Tensile specimens of  50 mm gauge length were elon- 
gated at a crosshead speed of 10 mm rain-1 to obtain 
flow curves. Tensile specimens of stainless steel were 
cut from both stainless steel sheets obtained by dis- 
solving the aluminium of the sandwich sheets in sodium 
hydroxide solution, and from stainless steel sheets as 
received. Aluminium sheets for tensile tests were fabri- 
cated by rolling at the same reduction and temperature 
as in the sandwich sheet fabrication. 

The plastic strain ratios, R, were measured at an 
engineering strain of 0.15 in accordance with ASTM 
E517-74. The dimensional changes of an R specimen 
were obtained by measuring the dimensions of a 
square grid photoprinted on the specimen surface 
within 0.001 ram. 

All the properties mentioned above were measured 
at 0, 45 and 90 ° to the rolling direction and averaged 
using the equation 

J? = (X0 + 2X45 + )(9o)/4 

where X0, X45 and Xg0 are the properties at 0, 45 and 
90 ° to the rolling direction. 

The martensite transformation takes place in 304 
stainless steel as it deforms plastically. The transfor- 
mation is known to be negligible at 15% tensile strain 
[3, 4], and this was also confirmed in the present work. 
Therefore it was not necessary to consider the volume 
change due to the martensite transformation in the R 
value measurements. 

3. Results and discussion 
A typical example of flow curves of the sandwich 
sheets is shown in Fig. 1. The flow curves are shown 
to follow the rule of mixture of  Equation 1. When 
transverse stresses develop in the component layers of 
the sheet due to their different anisotropic plastic 
behaviours, the flow stress of  the sandwich sheet 
should be expressed as 

O'us : O'IAV A "Jr- O'IBV B (2) 
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T A B  L E I Stainless-steel-clad a luminium sandwich sheet metal fabrication conditions* 

Sample Initial thickness Total Final 
No. (ram) reduction thickness 

SLS AI ratio (%) (ram) 

Composit ion Reduction ratio 
(vol %) (%) 

SLS A1 SLS A1 

Sandwich sheet metal A (rolling temperature: 400 ° C) 

A-1 0.4 x 2 2.0 28.6 2.0 
A-2 0.5 x 2 2.0 33.3 2.0 
A-3 0.4 x 2 2.5 30.3 2.3 
A-4 0.5 x 2 2.5 28.6 2.5 
A-5 0.4 x 2 3.0 31.6 2.6 
A-6 0.5 x 2 3.0 25 3.0 

Sandwich sheet metal B (rolling temperature: 450 ° C) 

B-1 0.4 x 2 2.0 28.6 2.0 
B-2 0.5 × 2 2.0 33.3 2.0 
B-3 0.4 x 2 2.5 30.3 2.3 
B-4 0.5 x 2 2.5 28.6 2.5 
B-5 0.4 x 2 3.0 31.6 2.6 
B-6 0.5 x 2 3.0 25 3.0 

Sandwich sheet metal C (rolling temperature: 500 ° C) 

C-1 0.4 x 2 2.0 28.6 2.0 
C-2 0.5 x 2 2.0 33.3 2.0 
C-3 0.4 x 2 2.5 30.3 2.3 
C-4 0.5 x 2 2.5 28.6 2.5 
C-5 0.4 x 2 3.0 31.6 2.6 
C-6 0.5 x 2 3.0 25 3.0 

0.38 0.62 9.6 36 
0.48 0.52 6.2 46 
0.33 0.67 10.5 36 
0.38 0.62 9.8 35 
0.28 0.72 14.0 36 
0.31 0.69 7.6 30 

0.40 0.60 7.0 37 
0.50 0.50 6.0 47 
0.34 0.66 5.8 38 
0.41 0.59 5.2 38 
0.31 0.69 8.6 39 
0.33 0.67 5.9 32 

0.40 0.60 4.4 39 
0.51 0.49 4.2 48 
0.36 0.64 5.0 39 
0.41 0.59 4.5 39 
0.31 0.69 5.0 39 
0.33 0.67 4.8 33 

* SLS: stainless steel, AI: aluminium. 
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Figure 1 Flow curves of  stainless steel (SLS), a luminium and sand- 
wich sheets. The stainless steel and a luminium specimens were 
worked similarly to the layers in composite sheets. (o)  Measured 
values. 

while the stresses in the transverse and thickness direc- 
tions in the component layers A and B are related by 

O'2s = 0 = O'2A V A -~- 02B V B (3) 
and 

O'3A = 0"3B = 0 (4) 

Here al, a2 and o 3 are the stresses in the tensile, trans- 
verse and thickness directions, respectively (Fig. 2). 

The stresses alA, alB, a2A and a2B can be calculated 
using an appropriate yield criterion. Semiatin [2] 
used Hill's quadratic yield criterion for anisotropic 

materials: 

F I a 2  - a3l 2 + GIo" 3 - -  ~112 + H l o l  - a2l 2 = 1 

(5) 
where F, G and H are constants which characterize the 
anisotropy. Recently the Hill criterion has been found 
to be inappropriate. Some new yield criteria have been 

1 t 1 

1 1 1 
Crus ~A Oi8 

Figure 2 Isostrain model for uniaxial tensile deformation of  clad 
sheet metal. See Equations 2, 3 and 4. 
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Figure 3 Yield loci for isotropic f c c  
metals. The solid line yield locus was calcu- 
lated by setting a = 8 in Equation 7. The 
dashed line yield locus was calculated by 
the Bunge method based on Taylor's mini- 
mum energy theory. 
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advanced to predict the yielding of anisotropic 
materials. 

Hosford [5] has proposed a modification to Equation 
1 which can be expressed as 

Flo-2 - o3] a 4- Glo-3 - -  0"11 a 4- HI0.1 - o-21 a = 1 
(6) 

where a = 6 for b c c  metals and a = 8 to 10 for f c c  
metals. For planar isotropic materials in the plane 
stress state (0"33----0), Equation 6 reduces to the 
equation 

Io-~[ a 4- [o-el a 4- Rio-1 - o-21 ° = (R 4- 1)% (7) 

where R is the plastic strain ratio and Cry is the uniaxial 
yield stress along the plane direction. The yield 
criterion fits very well with the yield loci calculated 
based on Taylor's minimum energy theory [6] for the 
deformation of a crystalline body. Figs 3 and 4 show 
yield loci for f c c  and b c c  metals whose grains are 
randomly distributed, calculated by the Bunge method 
[7] which is based on the Taylor theory. In the calcu- 
lation the fc  c and b c c metals were assumed to have 
the {1 1 1}(1 10)  and {hkl}(1 1 1) slip systems, 
respectively. The yield loci in Figs 3 and 4 can be best 
fitted by Equation 7 with a = 8 and 6, respectively, 
for the value R = 1 which applies to isotropic 
materials. Fig. 5 shows the yield loci calculated on the 
basis of the Taylor theory for metals with the 
{1 1 1}(1 1 0)  or {1 1 0}(1 1 1) slip systems and with 
strain ratios of 1.93 and 0.59. The yield loci in Fig. 5 
can be very well represented by Equation 7 with 
a = 8. Lee [8, 9] derived a theoretical relation between 
the limiting drawing ratio and the plastic strain ratio 
using Equation 7. The relation agreed very well with 
the measured relation at a = 8 for cubic-system 
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metals. The above examples suggest that the exponent 
a in Equation 7 need not vary with the degree of 
anisotropy which is reflected by the plastic strain ratio. 

Other attempts at modifying Equation 6 have been 
made by Hill [10], Bassani [11] and Gotoh [12]. Hill's 
new yield criterion for plane stress condition can be 
expressed as 

(1 + 2R)]o-i -- o-21 m 4-Io-~ 4- o-2[ m = 2(1 4- R)o-y 

(8) 

where m > 1. The exponent m is empirically expressed 
[13] as 

m = 1.14 + 0.86R for R < 1 
(9) 

m = 2 for R > I  

We are still not sure which criterion is the best. In this 
paper Equations 7 and 8 will be used as yield criteria 
for planar isotropic materials in the plane stress condi- 
tion. It is noted that setting a = 2 in Equation 7 and 
m = 2 in Equation 8 results in Hill's quadratic yield 
criterion under the plane stress condition. 

Strain components can be obtained from an appro- 
priate stress function using the associated flow rule 

d~ u = d2 Of(au) (10) 
Oa~j 

where de 0 and d2 are the strain increment and a pro- 
portionality factor, respectively. For  planar isotropic 
materials in the plane stress condition, the stress 
function may be, from Equations 7 and 8, expressed as 

f~(0.~j) = Io"11 ° + Io'=l: + RIo-~ - o-=l ° (11) 

f2(0.u) = (1 4- 2R)lo-1 - 02[ m --}- Io"1 4- o"21 m (12) 

It follows from Equations 10 and 11, and de1 + 
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Figure4 Yield locus for isotropic bcc  
metals. The Iocus was calculated by setting 
a = 6 in Equation 7, which is practically 
identical to that calculated by the Bunge 
method on the basis of Taylor's minimum 
energy theory. 

d~ 2 
R - -  

- ( 1  + 2R)10-1 - 0-21m[(0-, -t- 0"2)/(0" ' - -  0-2)]  "3!-10-1 -1- °'21 m 

d•3 - 21~, + 0-2[m 

Since the componen t  layers o f  the sandwich sheet and 
the sandwich sheet itself are subjected to an equal 
strain, their plastic strain ratios should be the same, 
that is 

de2s de2a dg2B 
R s  = = - -  

d/33s d/33A dS3B 

Therefore  it follows f rom Equat ion  13 that  

d~32s --(IO'2AIa/0-2A) "I- [RAI0-,A --  0-2AIa/(0-,A --  0-2A)] 
R s  - -  

d g 3 s  ( 1 0 - , A I a / O I A )  --1- ({ 0 -2Ata /0 -2A)  

- (I 0-2.1"/0-2.) + [RB 10-,. - -  0-=B I°/(<B --  0-2B)] 
= (15)  

( 1 < . 1 % . , . )  + (10-2.1a/0-2.) 

From  Equat ion  14 it follows that  

--(1 + 2 R A ) I 0 - 1 A  - -  0 -2A]m[(0 - ,A  + 0 - 2 A ) / ( 0 - , A  - -  0-2A)]  -~- 10- ,g  ~ -  0-2A1 m 
R s = 

(14) 

and, f rom Equat ion  8, 

(1 + 2RA)I0-,A - -  0-2AI m + I0-1A q- 0-2Aim 

= 2(1 + Ra)0-umA (18a) 

(1 + 2RB)]0-,. -- 0-2BI m + I0-,. + 0-2BI m 

= 2(1 + RB)0-.mB (18b) 

--210-1A --p 0-2AI m 

- -  - -  I m ( 1  + 2 R B ) I 0 - 1 B  O'2BIm[(O'IB ~ -  0-ZB)/ (O ' ,B - -  0-ZB)] "]- 10-,B + 0-2B 

-210-,B + o-2BI m 

The yield condit ions o f  the layers A and B in the 
sandwich sheet can be expressed, f rom Equat ion  7, as 

I0-,AI ° + I0-zAI ° + RAI0-IA -- 0-2A] a = (R A %- 1)0-uaA 

(17a) 

I0-,.l a + I0-=.1 ° + RB]0-, .  + 0-2.1 ° = ( R .  + 1 ) ~ .  

(17b) 

(16) 

In the above equations the flow stress 0-u was substituted 
for the yield stress o-y, to consider strain-hardening 
materials. 

The  values o f  0-,A, O-,B, 0-2A and 0-2B can be calculated 
using Equat ions  3, 15 and 17, or Equat ions  3, 16 and 
18, into which the measured values of  VA, VB, RA, RB, 
0-uA and 0-uB are substituted. 
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Figure 5 Yield loci for fcc metals with R = 0.59 and R = 1.93, 
calculated on the basis of Taylor's minimum energy theory (dashed 
curves), compared with those calculated by setting a = 8 in Equation 
7 (solid curves). 

The  flow stresses of  a lumin ium and  stainless steel 
compr i sed  in a sandwich  sheet fabr ica ted  at  500 ° C are  
given in Table  II .  

The t ransverse  stresses, 0-2A and  0-2B, and  the ra t io  o f  
the t ransverse  stress to the long i tud ina l  stress, 0-2/0-|, 
ca lcula ted  using the da ta  in Table  II  are  shown in Figs  
6 and 7. These indicate  tha t  different  yield cr i ter ia  
yield different t ransverse  and  long i tud ina l  stresses, 
and  the rat io o f  the transverse stress to the longi tudinal  
stress can even exceed 0.2. Therefore  we are  no t  confi- 
dent  tha t  the t ransverse  stress can be neglected in the 
ca lcula t ion  o f  flow stresses in sandwich  sheets. 

The flow stresses ca lcu la ted  using the Rule  o f  Mix-  
tures (Equa t ion  1 and  E q u a t i o n  2) are  given in Table  
III .  The stresses ca lcula ted  using Equa t ion  1 are  
prac t ica l ly  equivalent  to the measured  flow stresses. 
Equa t ion  2 can give rise to different  stresses depend ing  
on the yield cr i ter ia  used to calculate  the longi tud ina l  

stresses. The flow stresses ca lcula ted  on the basis o f  
the H o s f o r d  yield cr i te r ion  are in be t te r  agreement  
with those ca lcula ted  by  the mixture  rule than  those 
based  on  the two o ther  yield cri teria.  However ,  differ- 
ences between the flow stresses ca lcula ted  on the basis 
o f  the different yield cr i ter ia  are  prac t ica l ly  negligible. 
Therefore  the fact tha t  the Rule  o f  Mix tures  satisfies 
the flow stresses in sandwich sheets cannot  be explained 
by Semiat in ' s  a rgumen t  [2] tha t  the t ransverse  stresses 
are negligible c o m p a r e d  with the longi tud ina l  stresses. 

F o r  the convenience o f  exp lana t ion  the yield 
cri teria,  Equa t ions  7 and  8, m a y  be a p p r o x i m a t e d  by  

O'y = 0-1 - -  0~0"2 f o r  I0-21 < 0.210-11 (19) 
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Figure 6 Transverse stresses in stainless steel (SLS) and aluminium 
layers calculated on the basis of various yield criteria. (- .-)  a = 8 
in Equations 3, 15 and 17; ( - - - )  a = 2 in Equations 3, 15 and 17; 
( ) Equations 3, 16 and 18. Volume fraction of SLS (ix) 0.33, (o) 
0.40, (n) 0.50. 

where e is defined by  the reciprocal  o f  the slope o f  the 

tangent  a t  0-1 = 0-y and  0-2 = 0 o f  yield loci. Therefore  

is expressed as 

(d0- ,~ R (20) 
O~ = \do.2j~,=~y.a==0 - 1 + R 

regardless  o f  the yield cri teria,  Equa t ions  7 and  8. I t  
fol lows f rom Equa t ion  19 tha t  

0-uA = O'IA - -  ~A0-2A (21a) 

auB = alB - ~BaEB (21b) 

where the flow stress 0-u was subst i tu ted for the yield 
stress 0-y in Equa t ion  19. Subs t i tu t ion  o f  Equa t ions  3 

and 21 into Equa t ion  2 yields 

O'us = O - I A V  A -q- 0-1BVB -~- 0-uAVA ---I- O ' u B g  B 

+ 0-2.VB(% - C~A) = 0-uAVA + 0-u.V. 

+ 0-2AVA(~A -- % )  (22) 

The quan t i ty  (~A -- % )  m a y  be explici t ly expressed as 

IC~A ~BI IRA -- RBI - = < 1 ( 2 3 )  
1 + R A +  R B + R A R B  

The quan t i ty  (Ca - % )  makes  the con t r ibu t ion  o f  
a2A or  a2B less impor t an t .  Therefore  Equa t ion  22 is 
very well a p p r o x i m a t e d  by  the Rule  of  Mixtures ,  
Equa t ion  1. 

T A B LE I I Flow stresses of aluminium and stainless steel sheets comprised in a sandwich sheet fabricated at 500 ° C* 

Engineering strain (%) 10 15 20 25 30 35 40 45 50 60 

CruA (MPa) 78.4 86.3 92.2 97.1 101.0 103.9 106.9 109.8 111.8 115.7 0.4 
auB (MPa) 630.5 735.5 8 1 8 . 8  8 8 7 . 4  9 5 1 . 2  1004.1 1052 .2  1096.3  1134.6  1206.1 0.92 

*A = aluminium, B = 304 stainless steel. 
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Figure 7 T he  rat io of  t ransverse  stress to longi tudinal  stress in 

stainless steel (SLS) and  a l u m i n i u m  layers calculated on the basis of  

various yield criteria. (-.-) a = 8 in Equations 3, 15 and 17; ( - - - )  
a = 2 in Equations 3, 15 and 17; ( ) Equations 3, 16 and 18. 
Numerical values give the volume fraction of SLS. 

Equations 15 and 16 may be used to calculate the R 
value or the plastic strain ratio of  a sandwich sheet, 
since ~1 and o" 2 in the component  layers A and B can 
be calculated as explained earlier when the R value, 
flow stress and volume fraction of each component  
layer are known. The R values calculated on the basis 
of  the various yield criteria are compared with the 
measured data in Fig. 8. The values calculated on the 
basis of  the Hosford yield criterion (a = 8 in Equation 
15) and Hill 's new yield criterion (Equation 16) are in 
slightly better agreement with the measured data than 
the value calculated on the basis of Hill 's quadratic 
yield criterion (a -- 2 in Equation 15 or m = 2 in 
Equation 16). 
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Figure 8 Plastic strain ratios of sandwich sheets as a function of the 
volume fraction of stainless steel. (O) Measured values; ~. ~ calcu- 
lated using Equation 15 with a = 2; ( ) Equation 15 with a = 8; 
(-.--) Equation 16. 

4. Conclusions 
1. The longitudinal and transverse stresses developed 

in the component  layers of  stainless-steel-clad alu- 
minium sandwich sheet metals varied substantially 
with the yield criteria used in the stress calculation. 

2. An average of component  longitudinal stresses 
weighted by volume fractions, which must be the 
theoretical flow stresses of  the sandwich sheets, were 
almost equal to an average of component  flow stresses 
weighted by volume fractions (the mixture rule) 
regardless of  the yield criteria. The measured flow 
stresses followed the mixture rule. 

3. The plastic strain ratios of  the composite sheets 
were calculated using the plastic strain ratios, the flow 
stresses and the volume fractions of  the component  
sheets based on the various yield criteria. The calculated 
values were generally in good agreement with the 
measured data, though Hosford 's  yield criterion and 
Hill's new yield criterion yielded slightly better results 
than Hill's quadratic yield criterion for anisotropic 
materials. 
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